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Power and sample-size formulas for testing the homogeneity of relative risks using the score

method are presented. The homogeneity score test (Gart, 1985, Biometrika 72, 673-677) is formally equiv-
alent to the Pearson chi-square test, although they look different. Results of this paper may be useful in
assessing the validity of the model of a common relative risk before combining several 2 x 2 tables or in
designing a prospective study for detecting heterogeneity of relative risks.
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1. Introduction

The ratio of two binomial probabilities has been a parame-
ter of major interest in biometry. For example, the ratio of
proportions of having a disease for those exposed and those
unexposed to a risk factor (i.e., relative risk or risk ratio)
is a measure of the association between the disease and the
risk factor in prospective studies. When more than one 2 x 2
table is involved in a study, we are also interested in compar-
ing relative risks by strata. Gart (1985) has provided a like-
lihood score method for testing homogeneity of relative risks.
The score test can be applied for detecting discrepancies in
risk ratios or for examining the homogeneity assumption for a
summary relative risk, depending on the nature of the study.
Assuming the homogeneity, several authors (e.g., Gart, 1985;
Gart and Nam, 1988) have suggested interval estimation of
a common relative risk in the combination of the tables us-
ing likelihood scores. Their method possesses many desirable
statistical properties. However, its use is not advisable when
there are substantial discrepancies in risk ratios. It is prudent
to examine the adequacy of the model of a common relative
risk prior to its application.

Power and sample size related to the homogeneity score
test have not been thoroughly studied. In Section 2 of this
paper, we derive the asymptotic power of the score test and
an approximate sample-size formula for prospective studies.
Section 3 illustrates numerical examples using actual data,
and Section 4 contains some concluding remarks. Note that
we are interested in homogeneity of relative risks in cohort
studies and not a common odds ratio in case—control studies.

2. Asymptotic Power and Sample Size

Consider J pairs of independent binomial variates, xo; and
x1j, with corresponding parameters py; and p;; with sample
sizes ng; and ny; for j = 1,2,...,J. Let ¢;; = 1 — p;; for
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:=0,1and j = 1,2,...,J. Summation is denoted by dots,
e.g., T; = Tgj + z1; and n.; = ng; + ny;. Ratios of two
binomial parameters are p1;/po; = ¢; for j = 1,2,...,J.
We are interested in testing the null hypothesis Ho: ¢; =
¢ for every j against Hi: ¢; # ¢ for any j. (Define Py =
€PO1, P02, - - -, PO )-

The log-likelihood under the null hypothesis is

L.(¢,p0) = »_ L;(#,po;),
J

where Lj(¢,po;) = z1;In(¢) + (n1; — 21;)In(l — ¢po;) +
z.jln(pos) + (no; — zo;)In(l — po;) for j = 1,2,...,J. The
maximum likelihood estimators (MLEs) of ¢ and pg, & and
Po, are the solution of J + 1 equations from 0L./8¢ = 0 and
OL;/0po; =0, ie.,

D (m15 = maydboy)/(1 = éhos) =0
and ’

.2 R
a;poj +bjbo; +¢; =0,

where a; = 'n,.jd;, bj = —-{(J)()j + nlj)qAS + 15 + 'noj}, and
c; =z for j =1,2,...,J. Values of the MLEs are obtained
by an iterative procedure (cf., Rao, 1965, pp. 302-305). The
simple estimator of ¢,

J
Znojxlj/(n.j-z.j) /
j=1

3O _

J
anja:oj/(n.j — :r.j)
j=1
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(Tarone, 1981), may be used as an initial estimator for ¢. The
derivation of the simple estimator is analogous to that of the
Mantel-Haenszel summary odds ratioc (Mantel and Haenszel,
1959).

2.1 Asymptotic Power

Letting Sy4;(¢,p0;) = OL;(¢,p0;)/04, we can express a
statistic for testing Hy against H; as

Xi =) 29, (1)
where
2;(8) = Sg;(d,poj)/ [var {Ss,(d,505) }]?
= {(=z1; = n1;P1;)/d15 } / [nojmabrs/
{n1;($ - p1) +n0j‘§1j}]%

for j = 1,2,...,J (Gart, 1985). Note that p1; = ¢po; for
every j. Assume that n;;'s are large and J is fixed. The
statistic (1) is distributed asymptotically as a chi-square with
J — 1 degrees of freedom under Hy. The form (1) corresponds
to the statistic for testing a common odds ratio in case—control
studies (Breslow and Day, 1980), although they are different
in explicit forms.

The score test statistic for homogeneity (1) is equivalent to
the Pearson-type chi-square

1 J
2 A \2 A A
X510 =30 @iy = naghi)?/ (naghisdis)- 2)
1=0 j=1

This is shown in Appendix 1.
Let X.Zl—l,(l—a:) denote the 100 x (1 — ) percentile point of
a chi-square distribution with J —~ 1 degrees of freedom. The
asymptotic power of the homogeneity score test at level a is

Pr {)(3—1 > X3—1,(1—-a) l Hl}
=Pr {X?]_l(A) > X?]—l,(l-—-a)}’ (3)

where X3_1(A) has a noncentral chi-square distribution with
J — 1 degrees of freedom and noncentrality parameter A,
which is expressed as

- _ _ 2 _ 2
A= Znu(ﬂljfb%j + n0;q15) (P17 — P15)”/(noiP15415),
where $1; = ¢po; for every j (A2.1). Using tables of
the cumulative noncentral chi-square distribution (Haynam,

Govindarajulu and Leone, 1970), we can obtain the power for
given values of the noncentrality parameter and o level.

2.2 Sample Size
If the power is 1 — 3, we have, from (3),
2 2

X7-1,8(8) = XJ-1,(1-a) (4)
where x%_l’ B(A) is the 100 x (3 percentile point of a
noncentral chi-square distribution with J — 1 degrees of
freedom and noncentrality parameter A. Define design
fractions as ¢; = n.;/N, where N = ¥ n; and s; = ny;/n.j,
so that ny; = tjs;N andng; =t;(1—s;)Nforj=1,2,...,J.
We can express A in terms of N as

Ao {Z 185 {de)qu +{(1- Sj)qu)} (Plj -5135) } N,

(1 - 5;)p1;43;
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where p1; = ¢po; for every j (A2.2). Note that ¢ and the py;’s
are found numerically by solving J + 1 equations (A2.3). An
analogous form of the noncentrality parameter is

_ [ si(p1; = p13)? | (1= 55)(poj — Poj)?
8= [Zt] { pya; H N

DPojdo;j
(A2.4). The sample size required for a specific power of the
score test for Hy against H; at level o is found using the
relation (4).

We calculated sample sizes required to achieve a specific
power of the homogeneity score test for various values of
relative risks, baseline probabilities, and design parameters.
Some results for J = 2 are summarized in Table 1. Sample
sizes based on simple and maximum likelihood estimates of
¢, N (0), and N are essentially the same under a perfectly
balanced design, i.e., t; =ty = 1/2 and sy = s3 = 1/2. The
sample size required is larger when baseline probabilities are
smaller. It also relates inversely to the range of the variation
among relative risks. Sample sizes calculated under other
design configurations, e.g., t1 = 1/4 and t3 = 3/4 or t; = 3/4
and t2 = 1/4, yield similar conclusions as above. It also
demonstrates that the perfectly balanced design is optimal
in terms of sample size. Approximate sample sizes calculated
in Table 1 are based on asymptotic theory. We examine the
accuracy of nominal powers for relatively small sample sizes
by a Monte Carlo experiment using an IMSL subroutine
(IMSL, 1987). Actual powers of the homogeneity score test for
those total sample sizes less than or equal to 120 (i.e., n = 30)
corresponding to a 50% nominal power in Table 1 (nine cases)
range from 45 to 56% and those corresponding to an 80%
power (two cases) are 78 to 79%, based on 1000 simulations.
Note that the total sizes considered in simulations are slightly
modified so that group size n is an integer. Also, undefined
sampling points are excluded in computation of an actual
power. The nominal powers are satisfactorily close to actual
ones.

3. Numerical Examples

We illustrate application of the homogeneity score test, power,
and sample-size calculations in the following two examples.

Ezample 1

In a carcinogenesis bioassay study of Avadex (Innes et
al., 1969), the fungicide was orally administered to both
males (M) and females (F) in two strains of mice (X and
Y). Frequencies of pulmonary tumors among test mice for
categories XM, XF, YM, and YF were 4/16, 2/16, 4/18, and
1/15, and their respective controls were 5/79, 3/87, 10/90,
and 3/82. Corresponding relative risks were 3.95, 3.63, 2.00,
and 1.82. The score test (1) does not reject homogeneity of
relative risks (X2 = 0.954, p = 0.81), and it enables us to
combine information on a common relative risk from the four
2% 2 tables. The 95% confidence interval for a common relative
risk (Gart and Nam, 1988) is (1.35, 5.03), and it is concluded
that the fungicide is tumorigenic in mice. We examine the
asymptotic power of the homogeneity test and approximate
sample-size requirement for this experiment. The relative risks
for those animals exposed to the fungicide are ¢; = 3.95,
¢o = 3.63, ¢3 = 2.00, and ¢4 = 1.82. Under the perfectly
balanced design (t; = 0.25 and s; = 0.5 for every j), we
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Table 1
Approzimate sample sizes required for 50 and 80% power of the homogeneity score test
at a = 0.05 under the perfectly balanced design with J = 2 (N and N © gre sample
sizes based on simple and mazimum likelihood estimates of a common relative risk)

Baseline probabilities Relative risks 50% power 80% power
Po1 P02 #1 $2 N© N N©) N
0.1 0.05 0.5 1.5 732 732 1496 1496

3.0 231 231 472 472

5.0 122 120 249 245

1.0 2.0 1449 1449 2961 2961
3.0 522 522 1067 1067

5.0 215 213 439 435

2.0 5.0 614 614 1254 1254
8.0 239 232 488 474

0.2 0.10 0.5 1.5 339 339 693 693
3.0 105 105 214 214

5.0 54 51 110 105

1.0 2.0 659 659 1346 1346
3.0 234 235 478 480

5.0 94 92 192 188

2.0 5.0 268 270 548 551
8.0 100 87 205 177

obtain A = (0.003675)N from (A2.2). From (3), the approxi-
mate power of the homogeneity test of size a = 0.05 is 15.4%
for N = 411. The magnitude of the variation among these
relative risks is not large enough to be detected by the homo-
geneity test with a reasonable power.

Unless the degree of variation is very large, the assump-
tion of homogeneity is not likely to be rejected in a routine
carcinogenesis screening experiment. The noncentrality pa-
rameter corresponding to 50% power of the noncentral chi-
square with 3 d.f. at @ = 0.05 is 5.760; we then have N =
5.760/0.003675 = 1567. It is clearly a size beyond the limita-
tions of animal experiments. Note that homogeneity of rela-
tive risks is not the main concern in this carcinogenesis study.
Rather, it serves as a rational basis for combining several 2 x 2
tables in a common relative risk.

Ezample 2

Evans et al. (1978) investigated the relation between oral
contraceptive (OC) use and bacteriuria in a population-based
cohort of women aged less than 50 years. The total sample
size was 2357. The rates of women with bacteriuria among OC
users and nonusers were 23/441 and 65/1456 for ages 16-39
years and 4/18 and 12/452 for ages 40-49 years. The relative
risk for the first age group was ¢; = 1.11 while that for the
second group was ¢ = 8.37. The latter was eightfold greater
than the former. The study indicated no association between
OC use and bacteriuria for the younger group but a very
strong positive association for the older group. Conflicting
reports in prior studies (e.g., Kunin and McCormack, 1968;
Sussman et al., 1969; Takahashi and Loveland, 1974) could
be explained by the age factor. From (1), the score test
for detecting heterogeneity of two relative risks is highly
significant (X7 = 14.55, p = 0.0001). From (3) and (A2.1),
we obtain the power of this test as 97%. From (4) and (A2.2),
we have a sample size required for power = 80% of the score

test at the 0.05 level as N = 1214 for pg; = 0.045, pg2 = 0.027,
¢1 = L11, ¢o = 837, s = 0.25, s = 0.4, t; = 0.8, and
t2 = 0.2. Evans et al. need only half their sample to detect
heterogeneity of these relative risks with good power.

4. Remarks

In stratified cohort studies, researchers intend to find an
association of a major risk factor with disease. The benefit of
combining relative risks on the summary risk is quite striking
in terms of the width of a confidence interval for small or
medium sample sizes. Detecting a small variation among risk
ratios with good power requires a very large sample size.
Efficient interval estimation of a common relative risk and the
optimum score test (Gart and Nam, 1988) can be justifiably
applied in typical carcinogenesis bicassay experiments (e.g.,
Sontag, Page, and Saffiotti, 1976). In some cohort studies,
relative risks vary with the strata and researchers aim to
detect heterogeneity among relative risks. Formulas of power
and sample size for the score test can be helpful in designing
such prospective studies. Jones et al. (1989) have empirically
examined homogeneity tests of the odds ratio across strata
in case—control studies and have reported low power, which
parallels the case of the common relative risk in cohort
studies.

In comparative prospective studies, the relative risk is
the measure for appraising a causal effect of an agent to a
particular disease and the odds ratio is not of interest per
se (e.g., Miettinen, 1985). For estimating a common relative
risk across strata in prospective studies, e.g., example 1
(carcinogenesis bioassay experiment) in Section 3, the validity
of the homogeneity of relative risks can be examined by the
likelihood score test (Gart, 1985) but not usually by a test
for a common odds ratio (e.g., Breslow and Day, 1980). The
former is specifically designed for prospective studies, while
the latter is for case—control studies. In definition, relative
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risk (ratio of two incidence rates) and odds ratio (ratio of two
odds) are different parameters. In this paper, we have limited
our investigation to homogeneity of relative risks for stratified
prospective studies.

Radhakrishna (1966) generalized the approach of Cochran
(1954) to testing the equality of response measures of
two treatments across strata assuming a constant differ-
ence between the measures on various scales. Note that
common relative risk (¢), odds ratio (¢), and difference
(8) are response measures with a constant difference on
the logarithmic, logit, and constant scales, respectively.
When sample sizes are relatively small, the homogeneity
models are not likely to be rejected. If the goal of the
analysis is testing rather than estimation, the maximin
efficient robust test for equality of proportions across strata
on a family of scales (Gastwirth, 1985), which attains a
relatively high efficiency, may be prudent. Applied to the
bicassay data (Example 1, Section 3), the maximin test for
detecting a tumorigenicity of the fungicide is highly significant
(p = 0.004), with asymptotic relative efficiency (ARE) 93%.
In stratified comparative studies, however, researchers are
generally not only interested in hypothesis testing but also
in estimation, assuming homogeneity of the parameter of
interest across strata. The choice of parameter to be estimated
(e.g., relative risk, odds ratio) may be based on the nature of
the study, biological justification, common practice, and/or
empirical preference.
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RESUME

Les formules de calcul de puissance et de détermination
de tailles d’échantillons sont présentées pour le test de
Phomogénéité des risques relatifs a4 'aide de la méthode du
score. Le score-test d’homogénéité (Gart, 1985, Biometrika
72, 673-677) est formellement équivalent au test de chi-deux
de Pearson bien que présenté différemment. Les résultats de
cet article peuvent étre utiles pour évaluer la validité d’un
modele de risque relatif commun avant de combiner plusieurs
tables 2 x 2 ou dans la conception d’une étude prospective
pour détecter 'hétérogénéité de risques relatifs.
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APPENDIX 1
Equivalence of the Score and Pearson’s Chi-Square Tests

From (1), the jth component of the likelihood score statistic
is written as

{(@1; — n1jp1y) /a1 Y/ nojmajprj/{na;($ — prj) + 105415 }]
= {(z1; — njp1y) %/ (napryans) H1 + n1;$do;/(nojdi;)}

N2 L
= (z1j — ny615)°/(n1;P1;G15)

+ (z1j — n1;P15) bdoj/ (nojb1;diy)- (AL1)
Using the relation,
(x1j —n1;P15)/G15 = —(z0j — nojPos)/Gos» (AL.2)

from (8L;/0po;)

expressed as

po;=Poj.b=¢ = 0, the jth component can be

1
~ 2 A A

E (xij — ni;Piz)” ) (nijbijdis)-

i=0

The summation over j leads to (1) = (2).

APPENDIX 2
Derivation of Noncentrality Parameter

Under Hy: ¢; = ¢ for any j, the statistic (1) is an
asymptotically noncentral chi-square with J — 1 degrees of
freedom and a noncentrality parameter

A= Znu(nudﬁm +ng;d15)(p1j — B17)°/ (no;P1jdis)s

(A2.1)
where p1; = ¢pg; for every j. The po; is the asymptotic
value of pg; under Hy and the solution of the quadratic
equation ('1];50] + 5]170] + ¢; = 0, where @; = n;9, _J =
—{(nojpoj +n15)9+n15p15+n05}, and & = ng;po; +n11P13
We obtain (A2.1) from the asymptotic expectation of z; ((,b)
for every j under H;.

Since ny; = t;s;N and ng; = t;(1—s;)N, where N = Yn.j,
(A2.1) is rewritten as

A thsj {si60; + (1 — 5;)q1; } (p1j — D1;)* N
(1 - 5;)p1;a; ’
(A2.2)

where p1; = ¢Po; for every j. Note that ¢ and the Po;’s are
numerically found by solving the following J + 1 equations:

J
> t585(p1; — 6B0;)/ (1~ ;) =0

j=1

and

(A2.3)

_ _ L
Poj = — {bj + (5 — 4a;¢5) 2 } /(2a;),
where @;/N = t;¢,b;/N = —t;{(po; + 5j490;)¢ + (1 — s5q1;)},

and &;/N = t;{(1 - s;)poj + s;p1;} for j = 1,2,...,J. An
initial value for ¢ is

T ts, (1-s)p J
- 1
45(0) - 757 7
; (1 - SJ)QO] + 55915 J;

tjs; lws])poJ
1- s] qo; + s]qu

The noncentrality parameter of the asymptotic power
function of the Pearson-type chi-square test is expressed as

_ Zt‘ s;(p1j — B1j)?
4 DP15q15

Using the relation (A1.2) under H; as N — oo,

. (1- Sj)_(p()_j ~ Poj)? }] .
p()jq()j
(A2.4)

n15(p1j — P15)/q1; = —no;(poj — Poj)/do;,

we show that the noncentrality parameter (A2.1) is equal
to (A2.4). Since the statistics (1) and (2) are equivalent
(Appendix 1), their powers should be the same.




